Macam-macam Uji Karbohidrat
Penentuan karbohidrat yang paling mudah adalah dengan cara perhitungan kasar (proximate analysis) atau disebut juga Carbohydrate by Difference. Yang dimaksud dengan proximate analysis adalah suatu analisis di mana kandungan karbohidrat termasuk serat kasar diketahui bukan melalui analisis tetapi melalui perhitungan: % karbohidrat = 100% - % (protein + lemak + abu + air). Perhitungan Carbohydrate by Difference adalah penentuan karbohidrat dalam bahan makanan secara kasar, hasilnya biasanya dicantumkan dalam daftar komposisi bahan makanan.
Penentuan karbohidrat yang paling mudah adalah dengan cara perhitungan kasar (proximate analysis) atau disebut juga Carbohydrate by Difference. Yang dimaksud dengan proximate analysis adalah suatu analisis di mana kandungan karbohidrat termasuk serat kasar diketahui bukan melalui analisis tetapi melalui perhitungan: % karbohidrat = 100% - % (protein + lemak + abu + air). Perhitungan Carbohydrate by Difference adalah penentuan karbohidrat dalam bahan makanan secara kasar, hasilnya biasanya dicantumkan dalam daftar komposisi bahan makanan.
a) Uji Molisch
Uji Molisch merupakan uji yang paling umum untuk karbohidrat. Uji Molisch sangat efektif untuk senyawa-senyawa yang dapat didehidrasi oleh asam pekat menjadi senyawa furfural yang tersubstitusi, seperti hidroksimetilfurfural. Warna yang terjadi disebabkan oleh kondensasi furfural atau derivatnya dengan alfa-naftol menghasilkan senyawa kompleks berwarna merah-ungu. Thymol dapat dipakai sebagai pengganti alfa-naftol. Ia juga lebih stabil daripada alfa-naftol dan pada penyimpanan yang lama tidak berubah warna.
Uji Molisch merupakan uji yang paling umum untuk karbohidrat. Uji Molisch sangat efektif untuk senyawa-senyawa yang dapat didehidrasi oleh asam pekat menjadi senyawa furfural yang tersubstitusi, seperti hidroksimetilfurfural. Warna yang terjadi disebabkan oleh kondensasi furfural atau derivatnya dengan alfa-naftol menghasilkan senyawa kompleks berwarna merah-ungu. Thymol dapat dipakai sebagai pengganti alfa-naftol. Ia juga lebih stabil daripada alfa-naftol dan pada penyimpanan yang lama tidak berubah warna.
b) Uji Benedict
Uji Benedict dan uji Barfoed keduanya berdasarkan resuksi Cu2+ menjadi Cu+. Pada proses reduksi kupri dalam suasana alkalis biasanya ditambahkan zat pengompleks seperti sitrat pada larutan Benedict atau tartrat pada larutan Fehling, hal ini dilakukan untuk mencegah pengendapan CuCO3 dalam larutan natrium karbonat pada Benedict, sedangkan pada Fehling untuk mencegah pengendapan Cu(OH)2 atau CuO dalam larutan natirum hidroksida.
Produk oksidasi karbohidrat dalam larutan alkalis sangat kompleks dan banyak jumlahnya, belum semuanya dapat diidentifikasi yaitu berwarna hijau, merah, oranye, dan pembentukan endapan merah bata. Tidak seperti maltosa dan laktosa, sukrosa tidak dapat mereduksi Benedict, karena ia tidak memiliki gugus aldehida atau gugus keto bebas.
c) Uji Barfoed
Merupakan uji untuk membedakan karbohidrat golongan monosakarida dan disakarida . Prinsipnya adalah reduksi Cu2+ yang terdapat dalam pereaksi barfoed oleh gugus pereduksi pada monosakarida, dalam suasana asam. Reaksi positif ditunjukan dengan munculnya endapan merah orange.Komposisi pereaksi barfoed adalah : 48 g tembaga asetat, 50 ml asam laktat 85% air ad 1000 ml.
Dengan menggunakan reagen Barfoed yang mengandung koper asetat di dalam asam asetat, maka kita dapat juga membedakan monosakarida dan disakarida dengan jalan mengontrol kondisi-kondisi seperti pH dan waktu pemanasan.
d) Uji Seliwanoff
Reaksi spesifik lainnya untuk uji karbohidrat tertentu adalah uji Seliwanoff dan uji Foulger. Reaksi Seliwanoff disebabkan perubahan fruktosa oleh asam klorida panas menjadi asam levulinat dan hidroksimetilfurfural.
Sukrosa yang mudah dihidrolisis menjadi glukosa dan fruktosa, memberi reaksi positif dengan uji Seliwanoff. Pada pendidihan lebih lanjut, aldosa-aldosa memberikan warna merah dengan reagen Seliwanoff, karena aldosa-aldosa tersebut diubah oleh HCl menjadi ketosa.
Uji Benedict dan uji Barfoed keduanya berdasarkan resuksi Cu2+ menjadi Cu+. Pada proses reduksi kupri dalam suasana alkalis biasanya ditambahkan zat pengompleks seperti sitrat pada larutan Benedict atau tartrat pada larutan Fehling, hal ini dilakukan untuk mencegah pengendapan CuCO3 dalam larutan natrium karbonat pada Benedict, sedangkan pada Fehling untuk mencegah pengendapan Cu(OH)2 atau CuO dalam larutan natirum hidroksida.
Produk oksidasi karbohidrat dalam larutan alkalis sangat kompleks dan banyak jumlahnya, belum semuanya dapat diidentifikasi yaitu berwarna hijau, merah, oranye, dan pembentukan endapan merah bata. Tidak seperti maltosa dan laktosa, sukrosa tidak dapat mereduksi Benedict, karena ia tidak memiliki gugus aldehida atau gugus keto bebas.
c) Uji Barfoed
Merupakan uji untuk membedakan karbohidrat golongan monosakarida dan disakarida . Prinsipnya adalah reduksi Cu2+ yang terdapat dalam pereaksi barfoed oleh gugus pereduksi pada monosakarida, dalam suasana asam. Reaksi positif ditunjukan dengan munculnya endapan merah orange.Komposisi pereaksi barfoed adalah : 48 g tembaga asetat, 50 ml asam laktat 85% air ad 1000 ml.
Dengan menggunakan reagen Barfoed yang mengandung koper asetat di dalam asam asetat, maka kita dapat juga membedakan monosakarida dan disakarida dengan jalan mengontrol kondisi-kondisi seperti pH dan waktu pemanasan.
d) Uji Seliwanoff
Reaksi spesifik lainnya untuk uji karbohidrat tertentu adalah uji Seliwanoff dan uji Foulger. Reaksi Seliwanoff disebabkan perubahan fruktosa oleh asam klorida panas menjadi asam levulinat dan hidroksimetilfurfural.
Sukrosa yang mudah dihidrolisis menjadi glukosa dan fruktosa, memberi reaksi positif dengan uji Seliwanoff. Pada pendidihan lebih lanjut, aldosa-aldosa memberikan warna merah dengan reagen Seliwanoff, karena aldosa-aldosa tersebut diubah oleh HCl menjadi ketosa.
e) Uji Fenilhidrazin
Karbohidrat (kecuali manosa) yang memiliki gugus fungsional aldehid atau keton, membentuk osazon dengan fenilhidrazin. Glukosa dan fruktosa memberikan osazon yang sama karena monosakarida-monosakarida tersebut tidak mempunyai letak susunan gugus -H dan -OH yang sama pada atom akrbon 3, 4, 5, dan 6. Manosa tidak membentui osazon di dalam larutan air, tetapi mebentuk fenilhidrazin yang tidak larut.
Karbohidrat (kecuali manosa) yang memiliki gugus fungsional aldehid atau keton, membentuk osazon dengan fenilhidrazin. Glukosa dan fruktosa memberikan osazon yang sama karena monosakarida-monosakarida tersebut tidak mempunyai letak susunan gugus -H dan -OH yang sama pada atom akrbon 3, 4, 5, dan 6. Manosa tidak membentui osazon di dalam larutan air, tetapi mebentuk fenilhidrazin yang tidak larut.
Tidak ada komentar:
Posting Komentar